Nicholas H. Nelsen
Ph.D. Candidate
Amazon AI4Science Fellow
California Institute of Technology
About Me
I am on the academic job market and seek full-time positions with start dates in Fall 2024
Welcome! I am a final-year graduate student in applied mathematics at Caltech, where I am advised by Prof. Andrew M. Stuart. Broadly, my research interests live at the intersection of computational mathematics and statistics. Using rigorous analysis and domain-specific insight, I develop novel data-driven methods for high- and infinite-dimensional problems, establish theoretical guarantees on the reliability and trustworthiness of these methods, and apply them in the physical and data sciences.
Much of my current research involves the design and analysis of efficient machine learning algorithms that are tailor-made for scientific and other types of continuum data. I study ways to achieve better accuracy with fewer training data and develop principled uncertainty quantification techniques for operator learning. My work is motivated by scientific computing tasks that involve complex physical systems or inverse problems, where the data is often heterogeneous, noisy, incomplete, and limited in number. I deploy the methodologies arising from my research in several application areas, including medical imaging, climate modeling, and materials science. Please refer to my curriculum vitae and publications page to learn more about my background and research experience.
I am fortunate to be supported by the Amazon/Caltech AI4Science Fellows Program and formerly by a NSF Graduate Research Fellowship (2018 - 2023). In 2020, I obtained my M.Sc. from Caltech, and before starting doctoral study in the fall of 2018, I worked on Lagrangian particle methods as a summer research intern in the Center for Computing Research at Sandia National Laboratories. I obtained my B.Sc. (Mathematics), B.S.M.E., and B.S.A.E. degrees from Oklahoma State University in 2018.
nnelsen [at] caltech [dot] edu
Recent News
2023/12 (new): I am presenting a poster on our spotlight paper at NeurIPS 2023 in New Orleans, Louisiana.
2023/10: I am delivering an invited talk in MS23: Advances in V&V, Uncertainty Quantification, and Data-Driven Modeling at the Advances in Computational Mechanics (ACM 2023) conference in Austin, TX.
2023/09: Our work on Error Bounds for Learning with Vector-Valued Random Features was accepted as a NeurIPS 2023 Spotlight paper!
2023/09: I am giving an invited talk in MS05: Numerical Meet Statistical Methods in Inverse Problems at the 11th Applied Inverse Problems Conference (AIP23) to be held in Göttingen, Germany.
2023/08: I am co-organizing the minisymposium MS831: Randomization for Simplified Machine Learning - Random Features and Reservoir Computers at the 10th International Congress on Industrial and Applied Mathematics (ICIAM 2023) in Tokyo, Japan.